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Effective desynchronization with bipolar double-pulse stimulation

Peter A. Tass*
Institute of Medicine, Research Centre Ju¨lich, 52425 Ju¨lich, Germany

and Department of Stereotactic and Functional Neurosurgery, University of Cologne, 50924 Cologne, Germany
~Received 12 June 2002; published 27 September 2002!

This paper is devoted to the desynchronizing effects of bipolar stimuli on a synchronized cluster of globally
coupled phase oscillators. The bipolar pulses considered here are symmetrical and consist of a positive and a
negative monopolar pulse. A bipolar single pulse with the right intensity and duration desynchronizes a
synchronized cluster provided the stimulus is administered at a vulnerable initial phase of the cluster’s order
parameter. A considerably more effective desynchronization is achieved with a bipolar double pulse consisting
of two qualitatively different bipolar pulses. The first bipolar pulse is stronger and resets the cluster, so that the
second bipolar pulse, which follows after a constant delay, hits the cluster in a vulnerable state and desynchro-
nizes it. A bipolar double pulse desynchronizes the cluster independently of the cluster’s dynamical state at the
beginning of the stimulation. The dynamics of the order parameter during a bipolar single pulse or a bipolar
double pulse is different from the dynamics during a monopolar single pulse or a monopolar double pulse.
Nevertheless, concerning their desynchronizing effects the monopolar and the bipolar stimuli are comparable,
respectively. This is significant for applications where bipolar stimulation is required. For example, in medicine
and physiology charge-balanced stimulation is typically necessary in order to avoid tissue damage. Based on
the results presented here, demand-controlled bipolar double-pulse stimulation is suggested as a milder and
more efficient therapy compared to the standard permanent high-frequency deep brain stimulation in neuro-
logical patients.

DOI: 10.1103/PhysRevE.66.036226 PACS number~s!: 05.45.Xt, 05.40.Ca, 87.19.La
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I. INTRODUCTION

Synchronization processes abound in physics@1,2#, chem-
istry @3#, biology @4–6#, and medicine@7#. Stimulation is a
major experimental tool that is used for investigating a
manipulating dynamical processes@1–7#. To study desyn-
chronizing effects of pulsatile stimuli, the concept of pha
resetting@4# was extended to populations of noninteracti
@8# and interacting@9# oscillators subjected to random force
For this, limit cycle oscillators are approximated by pha
oscillators @3#, and desynchronization is caused by stim
that exclusively affect the phases of the oscillators.

A single pulse of the right intensity and duration desy
chronizes a fully synchronized cluster of oscillators if t
pulse hits the cluster in a vulnerable phase range which
responds to only a small fraction~5% or even less! of a
period of the oscillation@9#. However, this is tricky to realize
under noisy experimental conditions typically encountered
biological systems. What makes single-pulse stimulat
even less practicable is that the correct stimulation par
eters also depend on the extent of the synchronization
cluster: A weaker pulse has to be used to desynchroniz
weakly synchronized cluster, whereas a stronger pulse is
essary for the desynchronization of a cluster that is in
fully synchronized state. Moreover, not only the streng
~i.e., intensity and duration! but also the critical phase a
which a pulse has to be administered crucially depends
the extent of synchronization of the cluster@9,10#.

For this reason, a double-pulse stimulation technique
been developed which makes it possible to effectively des
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chronize a cluster of phase oscillators independently of
cluster’s dynamic state at the beginning of the stimulat
@10#. The double pulse consist of two qualitatively differe
stimuli: The first, stronger pulse resets the cluster, so
after the first pulse the cluster restarts in a stereotyped w
The second, weaker pulse is administered after a fixed d
and hits the cluster in a vulnerable state in order to caus
desynchronization. Instead of the first, strong pulse, alter
tively, a high-frequency pulse train@11# or a low-frequency
pulse train@12# can be used to reset the cluster~for a review
see Ref.@12#!.

As yet, in all of these theoretical studies the effects
monopolar pulses were investigated@9–12#. In the context of
electrical stimulation, a monopolar pulse corresponds t
pulsatile current injection via an electrode. In applications
biological systems, however, it is often necessary to
charge-balanced pulses which guarantee that on averag
stimulated tissue is not charged, so that tissue damage ca
avoided @6,13#. A charge-balanced stimulation is typicall
achieved either~i! by means of capacitor driven electron
circuits which control the stimulation in a way that after
monopolar pulse the injected charge smoothly flows back
~ii ! by means of bipolar pulses, which consist of two opp
site monopolar pulses during which on average there is
net current flow@6,13#.

This paper is devoted to the desynchronizing effects
bipolar single pulse and bipolar double-pulse stimulation
a clutser of globally coupled phase oscillators in the prese
of noise. The transient dynamics occuring during adminis
tion of the bipolar stimuli are compared with the transien
related to the monopolar variants. Finally, it will be di
cussed how to use the results presented here for the mo
based development of demand-controlled deep brain sti
©2002 The American Physical Society26-1
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lation techniques, which essentially require the use
charge-balanced stimuli.

II. MODEL

Along the lines of a first approximation the dynamics o
population of neurons can be modeled by means of a
work of phase oscillators@3,14#. This approach was exten
sively used, in particular, for investigating spontaneous s
chronization processes in populations of oscillatory neur
@3,14#. To study stimulus-induced transient dynamics
consider a cluster of coupled phase oscillators subjected
stimulusS and to random forces, which is governed by t
Langevin equation

ċ j5V1
1

N (
k51

N

G~c j2ck!1X~ t !S~c j !1F j~ t !, ~1!

wherec j denotes the phase of thej th phase oscillator, i.e.
the j th model neuron@9#. For the sake of simplicity all os
cillators are assumed to have the same eigenfrequencyv j
5V. The global coupling is a 2p periodic function. For the
time being we consider a simple sine coupling of the for

G~c j2ck!52Ksin~c j2ck!, ~2!

whereK is a non-negative coupling constant. This type
coupling is sufficient to explain the basic desynchronizat
mechanism employed by the bipolar stimulation techniq
suggested here. The impact of both cosine couplings
cos(cj2ck) and coupling terms of second and higher ord
such as sin@2(cj2ck)#, sin@3(cj2ck)# has already been ana
lyzed in detail in the context of monopolar stimulation tec
niques@9,12# and will be discussed below.

The impact of an electrical stimulus on a single neur
depends on the phase of the neuron at which the stimulu
administered@15#. Accordingly, the stimulus is modeled by
2p periodic, time independent functionS(c j )5S(c j
12p). First, we assume that the stimulus is of lowest or
and defined by

S~c j !5I cos~c j !, ~3!

whereI is a constant intensity parameter. The effect of m
complex stimuliS, e.g., containing higher order terms su
as cos(2cj) and sin(2cj), has already been investigated
monopolar stimulation techniques@9,12# and will be dis-
cussed below.

Administration of amonopolar single pulseis modeled by

X~ t !5H 1, stimulus is on at timet

0, stimulus is off at timet
~4!

@Fig. 1~a!#. In contrast, a symmetrical bipolar single pul
consists of a positive monopolar single pulse and a dire
following negative monopolar single pulse, which w
briefly be denoted as positive and negative pulse below@Fig.
1~b!#. The parameters of the positive and the negative pu
are identical with respect to all parameters except for the s
of X. In particular, positive and negative pulse have identi
03622
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intensityI and duration. The duration of the positive and t
negative pulse will be denoted asT/2, so that the duration o
the bipolar single pusle is given byT. Accordingly, the ad-
ministration of asymmetrical bipolar single pulseis modeled
by

X~ t !5H 1, positive pulse is on at timet

21, negative pulse is on at timet

0, stimulus is off at timet.

~5!

In an experimental application a symmetrical bipolar sin
pulse would guarantee a charge-balanced stimulation.

The random forcesF j (t) are modeled by Gaussian whit
noise which obeyŝF j (t)&50 and^F j (t)Fk(t8)&5Dd jkd(t
2t8) with constant noise amplitudeD. To study the dynam-
ics of Eq. ~1! we first derive the corresponding Fokke
Planck equation which is an evolution equation for the pro
ability density f ($c l%,t), where $c l% stands for the vector
(c1 , . . . ,cN). f ($c l%,t) dc1•••dcN gives us the probabil-
ity of finding the oscillators’ phases in the interva
ck . . . ck1dck . In order to simplify the analysis we turn t
a more macrospcopic level of description by introducing
average number densityn(c,t) according to

n~c,t !5^ñ~$c l%;c!& t

5E
0

2p

•••E
0

2p

dc1•••dcNñ~$c l%;c! f ~$c l%;t !,

~6!

FIG. 1. Time course ofX from Eqs.~4! and ~5! during a mo-
nopolar single pulse~a! @see Eq.~4!#, during a symmetrical bipolar
single pulse~a! @see Eq.~5!#, during a monopolar double pulse~a!
@see Eq.~4!#, and during a symmetrical bipolar double pulse~a! @see
Eq. ~4!#. A symmetrical bipolar single pulse consists of a positi
and a directly following negative single pulse~b!. The positive and
the negative pulses are identical with respect to all parameters
cept for the sign ofX. A symmetrical double pulse consists of tw
symmetrical bipolar single pulses~d!: The first bipolar single pulse
is stronger@i.e., it is longer and has a higher intensityI from Eq.
~3!# and resets the cluster. The second bipolar single pulse foll
after a constant delay, is weaker and desynchronizes the cluste
hitting it in a vulnerable state.
6-2
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EFFECTIVE DESYNCHRONIZATION WITH BIPOLAR . . . PHYSICAL REVIEW E66, 036226 ~2002!
where the number density is defined byñ($c l%;c)
5N21(k51

N d(c2ck) @3#. The probability densityf ($c l%,t)
provides us with information concerning the phase of e
single oscillator. In contrast,n(c,t) tells us how many oscil-
lators of the whole population most probably have phasec at
time t.

With a little calculation we finally obtain the evolutio
equation for the average number density,

]n~c,t !

]t
52

]

]c H n~c,t !E
0

2p

dc8G~c2c8!n~c8,t !J
2

]

]c
n~c,t !X~ t !S~c!2V

]

]c
n~c,t !

1
D

2

]2n~c,t !

]c2
, ~7!

which holds for largeN @9#. For the numerical investigation
the Fourier transformed model equation~7! was integrated
with a fourth order Runge-Kutta algorithm with a time st
of 0.0001, where Fourier modes with wave numbersuku
<200 were taken into account. For a detailed analytical
numerical investigation of Eq.~7! I refered to Ref.@9#.

III. SPONTANEOUSLY EMERGING SYNCHRONY

The time-dependent extent of in-phase synchronizatio
quantified with

Z~ t !5R~ t !exp@ iw~ t !#5E
0

2p

n~c,t !exp~ ic!dc, ~8!

where R(t) and w(t) are the real amplitude and the re
phase ofZ, respectively@3,16#. Because of the normalizatio
condition *0

2pn(c,t) dc51, the amplitude fulfills 0<R(t)
<1 for all times t. Perfect in-phase synchronization corr
sponds toR51, whereas an incoherent state, given
n(c,t)51/(2p), is related toR50. Z(t) corresponds to the
center of mass ofn(c,t)exp(ic), the average number densi
circularly aligned in the Gaussian plane~Fig. 2!.

To study the impact of stimulation, first, the cluster’s b
havior without stimulation@i.e., X(t)50 in Eqs.~4! and~5!#
has to be clarified. Let us assume that the coupling is gi
by Eq. ~2!. Noisy in-phase synchronization emerges out
the incoherent staten51/(2p) due to a decrease of the nois
amplitudeD @3# or, analogously, because of an increase
the coupling strength@9#. WhenK exceeds its critical value
Kcrit5D, Z from Eq. ~8! becomes an order parameter@1#
which governs the dynamics of the other, infinitely ma
stable modes~i.e., frequency components! on the center
manifold. In this way a stable limit cycleZ(t)5Y exp@i(V
1V̄)t# evolves forK.D, whereY is a complex constant
and V̄ is a real frequency shift term that depends on mo
parameters and vanishes if the couplingG contains no cosine
terms as in Eq.~2! @9#.

The cluster’s collective dynamics will not only be visua
ized with the order parameterZ, but also by considering the
03622
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collective firing. A single firing/bursting model neuron fire
bursts whenever its phase vanishes~modulo 2). Accordingly,
the cluster’s collective firing is given by the firing density

p~ t !5n~0,t !, ~9!

which corresponds to quantities registered in neuroph
ological experiments such as multiunit activity~MUA !, local
field potentials~LFP!, and magnetic or electric fields mea
sured with magnetoencephalography~MEG! or electroen-
cephalography~EEG!.

FIG. 2. Trajectory of the order parameterZ from Eq. ~8! in the
Gaussian plane during and after a monopolar single pulse@~a!–~c!#
and during a bipolar single pulse@~d!,~e!#. In ~a!–~e! the unit circle
indicates the maximal range ofuZu. Monopolar single pulse:~a!
series of identical stimuli withX(t)S(c)5I cosc ~with I 57) ad-
ministered at different initial phaseswB in the stable synchronized
state ~‘‘ s ’’ !. Z approaches its attractorZ1

stat from Eq. ~10! for t
→`. Only the stimulus administered at the vulnerable initial pha
~‘‘ d ’’ ! moves Z through the origin. Trajectory ofZ before and
during ~b! and after~c! a desynchronizing monopolar single puls
@parameters as in~a!#. ~b! After running on its stable limit cycle
~inner circle! in the counterclockwise direction,Z is moved by the
pulse into the origin (Z50). Stimulation starts at ‘‘s ’’ and ends in
‘‘ d ’’. ~c! After the stimulation the cluster spontaneously spir
back to its stable limit cycle. Symmetrical bipolar single pulse:~d!
Series of identical negative pulses withX(t)S(c)52I cosc ~with
I 57) administered at different initial phaseswB in the stable syn-
chronized state~‘‘ s ’’ !. For t→` Z approaches its attractorZ2

stat.
Only the trajectory starting in ‘‘d ’’ runs through the origin.~e!
Before the bipolar stimulationZ runs on its stable limit cycle~inner
circle! in the counterclockwise direction. The positive pulse starts
~‘‘ s ’’ ! and movesZ halfway towards the attractorZ1

statbelonging to
the positive pulse shown in~a!, so that at the end of the positiv
pulseZ is located in ‘‘h ’’. The directly following negative pulse
starts in ‘‘h ’’ and movesZ towards the attractorZ2

statof the negative
pulse~d!, so that at the end of the negative pulseZ is located in the
origin of the Gaussian plane~‘‘ d ’’ !. ~f! The ratior 5R(tE)/R(tB)
from Eq. ~13! is calculated for a series of stimulations where t
normalized phase and amplitude errorEw andET from Eq.~11! and
Eq. ~12! are varied between20.1 and10.1. Model parameters
~a!–~f! G(x)52sinx, D50.4, V52p, S(c)5I cosc, I 57. Pulse
duration T50.31 of the monopolar single pulse in~b!, and T
50.46 of the bipolar single pulse in~e!.
6-3
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IV. SINGLE PULSE

A. Monopolar single pulse

Let us first consider the cluster’s dynamics during a sin
monopolar pulse@8,9#. During the monopolar pulseX(t)
51, andS from Eq.~3! is constant in time. If the stimulusS
is sufficiently strong~i.e., its intensity parameterI is large
enough! with respect to the coupling strength,n(c,t) tends
to a stationary densitynstat(c) for t→`. The latter is the
attractor of Eq.~7!, independently of the initial staten(c,0)
at which the stimulation starts@9#. Correspondingly, the or
der parameterZ from Eq. ~8! is attracted by

Zstat5E
0

2p

nstat~c!exp~ ic!dc. ~10!

tB and tE stand for the time of stimulus onset and stimul
end, andwB5 w(tB) denotes the initial phase at which th
stimulus administered. In Fig. 2~a! the collective dynamics
of the cluster is visualized by plotting the trajectory ofZ in
the Gaussian plane, wherewB is varied within one cycle
@0,2p#. A desynchronized state corresponds toZ50. Thus,
to desynchronize the synchronized cluster, the single p
has to be administered at a critical~vulnerable! initial phase
and it has to be turned off as soon asZ reaches the origin o
the Gaussian plane@Fig. 2~b!#. The desynchronized state
unstable. Therefore after the desynchronizing stimulatioZ
spirals back to its stable limit cycle, so that the cluster
comes synchronized again@Fig. 2~c!#.

B. Symmetrical bipolar single pulse

A symmetrical bipolar single pulse consists of a posit
and a directly following negative pulse which are identic
with respect to all parameters except for the sign ofX @Fig.
1~b!#. From Eqs.~3! and ~5! it follows that during the posi-
tive pulseX(t)S(c j )5I coscj holds, so that the Langevin
equation ~1! reads ċ j5V1N21( l 51

N G(c j2c l)1I coscj

1Fj(t). In contrast, during the negative pulseX(t)S(c j )5
2I coscj5I cos(cj1p). With this and by applying the trans
formationf j5c j1p ( j 51, . . . ,N) to Eq.~1!, for the nega-
tive pulse we obtainḟ j5V1N21( l 51

N G(f j2f l)1I cosfj

1Fj(t), which equals the Langevin equation belonging to
positive pulse. Hence, except for a shift of all phases byp,
the dynamics during a negative pulse is identical to the
namics during a positive pulse.

This difference is illustrated by comparingZ’s trajectories
belonging to series of simulations where the same infinit
long positive pulse@Fig. 2~a!# or the same infinitely long
negative pulse@Fig. 2~d!# is administered at different initia
phases, respectively. Rotating the trajectories belongin
the positive pulse byp around the origin of the Gaussia
plane yields the trajectories belonging to the negative pu
Let us denote the attractor from Eq.~10! of the infinitely
long positive pulse byZ1

stat@Fig. 2~a!#, and the attractor of the
infinitely long negative pulse byZ2

stat @Fig. 2~d!#. The two
attractors have a phase difference ofp, while their ampli-
tudes are identical,uZ1

statu5uZ2
statu.
03622
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To desynchronize the cluster of oscillators with a bipo
single pulse, the stimulus has to be administered at the r
initial phase, so thatZ runs along a zigzaglike trajectory from
the stable limit cycle into the origin of the Gaussian pla
@Fig. 2~e!# Before the bipolar stimulationZ runs on its stable
limit cycle in counterclockwise direction. The positive puls
starts in~‘‘ s ’’ ! and movesZ towards the attractorZ1

statof the
positive pulse@Fig. 2~a!#. At the end of the positive pulseZ
has been shifted halfway toZ1

stat and is located in ‘‘h ’’. Due
to the directly following negative pulseZ is abruptly shifted
towards the attractorZ2

statof the negative pulse@Fig. 2~d!#, so
that Z darts sideways. At the end of the negative pulseZ is
located directly in the origin of the Gaussian plane~‘‘ d ’’ !.
After the bipolar single pulse the cluster resynchronizes@Fig.
2~c!#.

Figure 2~f! demonstrates that for a given intensity para
eter I, correct values of the durationT, and the initial phase
wB have to be chosen in order to achieve a strong desync
nization. We denote the values ofT and ofwB which lead to
a maximal desynchronization~i.e., Z50) by Tcrit andwB

crit .
With this we introduce the normalized phase error

Ew5
w2wB

crit

2p
~11!

and the normalized duration error

ET5
T2Tcrit

Tcrit
. ~12!

To estimate the extent of desynchronization we define

r 5
R~ tE!

R~ tB!
, ~13!

i.e., the ratio between the amplitudeR of the order paramete
at the end of the stimulation andR at the beginning of the
stimulation. Fig. 2~f! shows howr depends onEw and ET .
Maximal desynchronization (r 50) only occurs for vanish-
ing Ew and ET . A strong desynchronization withr<0.2
cannot occur foruEwu.0.05 anduETu.0.05.

V. DOUBLE PULSE

A. Monopolar double pulse

The monopolar double pulse consists of two monopo
single pulses separated by a pause@Fig. 1~c!# @10#. The first
pulse resets the cluster, whereas the second pulse cau
desynchronization as explained in Sec. IV A. In the sta
synchronized state before the double pulse,Z runs on its
limit cycle @Fig. 3~b!#. The first pulse is stronger compared
the second pulse, i.e., the first pulse is longer and/or ha
larger intensity parameterI. Therefore during the first pulseZ
is quickly attracted by the corresponding attractorZstat @Figs.
3~a!,3~b!#. Independently of the initial dynamical state
which the first pulse is administered, at the end of the fi
pulseZ is sufficiently close toZstat @Fig. 3~b!#. During the
pause between the first and the second pulseZ relaxes to its
stable limit cycle in a stereotyped way@Fig. 3~c!#. The sec-
6-4
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ond pulse is administered at the right initial phase so thatZ is
moved into the origin of the Gaussian plane, the desynch
nized state@Fig. 3~c!#. After the second pulseZ spirals back
to its stable limit cycle as shown in Fig. 2~c!.

B. Symmetrical bipolar double pulse

The symmetrical bipolar double pulse consists of two
polar single pulses separated by a pause@Fig. 1~d!#. Similar
to the monopolar double pulse, the first bipolar single pu

FIG. 3. Trajectories ofZ from Eq.~8! are plotted in the Gaussia
plane~same format as in Fig. 2!. Monopolar single pulse: ~a! Series
of identical positive pulses withX(t)S(c)5I cosc ~with I 521)
administered at different initial phaseswB in the stable synchro-
nized state~‘‘ s ’’ !. ~d! Series of identical negative pulses wi
X(t)S(c)52I cosc ~with I 521) administered at different initia
phaseswB in the stable synchronized state~‘‘ s ’’ !. In both casesZ
approaches the corresponding attractorsZ1

stat ~a! and Z2
stat ~d! for t

→`. Compared to Figs. 2~a!,2~d! the intensityI is larger here (I
521 vs I 57 in Fig. 2!, so that a quick reset is achieved, i.e.,Z
reaches its attractor rapidly. Amonopolar double pulseconsists of a
stronger, resetting monopolar single pulse@parameters as in~a!# and
a weaker, desynchronizing monopolar single pulse@parameters as in
Fig. 2~a!#. ~b! Trajectory ofZ before and during the first pulse of th
double pulse. The first pulse is administered at ‘‘s ’’ and forcesZ to
the corresponding attractorZ1

stat ~‘‘ ! ’’ !. ~c! After the first pulseZ
relaxes from the attractor towards its stable limit cycle. The sec
pulse of the monopolar double pulse starts at ‘‘s ’’ and movesZ
into the origin~‘‘ d ’’ !. A bipolar double pulseconsists of a stronger
resetting bipolar single pulse@parameters as in~a! and ~d!# and a
weaker, desynchronizing bipolar single pulse@parameters as in Fig
2~e!#. ~e! Trajectory ofZ before and during the first bipolar pulse o
the bipolar double pulse. Before the stimulationZ runs on its stable
limit cycle ~inner circle! in the counterclockwise direction. Th
positive pulse is administered at ‘‘s ’’ and forcesZ to its attractor
Z1

stat ~‘‘ ! ’’ !. The directly following negative pulse then movesZ to
the attractorZ2

stat ~‘‘ L ’’ !. ~f! At the end of the first bipolar pulseZ
is located sufficiently close toZ2

stat ~‘‘ L ’’ !. During the pause be
tween first and second bipolar pulseZ relaxes back to its stable limi
cycle. The desynchronizing bipolar pulse@with parameters as in
2~e!# movesZ along a zigzag trajectory: The positive pulse starts
‘‘ s ’’ and movesZ to ‘‘ h ’’, the directly following negative pulse
shifts Z into the origin ~‘‘ d ’’ !. Model parameters:~a!–~f! G(x)5
2sinx, D50.4, V52p, S(c)5I cosc. I 521 in ~a!, ~b!, ~d!, and
~e!. I 57 in ~c! and~f!. Pulse durationT50.5 in ~b!, T50.4 in ~c!,
T51 in ~e!, andT50.48 in ~f!.
03622
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performs a reset, whereas the second bipolar single p
desynchronizes the cluster as explained in the former sec
The first bipolar single pulse is stronger compared to
second bipolar single pulse, which means that the first bi
lar single pulse is longer and/or has a larger intensity par
eterI. Before stimulus adminitrationZ runs on its stable limit
cycle @Fig. 3~b!#. The first bipolar single pulse performs
double reset: Independently ofZ’s initial conditions, the re-
setting positive pulse shiftsZ towards the corresponding a
tractor Z1

stat @Figs. 3~a!,3~e!#, in this way achieving a first
reset. The directly following resetting negative pulse th
movesZ towards the opposite attractorZ2

stat @Figs. 3~d!,3~e!#,
so thatZ undergoes a second reset. After this zigzaglike re
Z is sufficiently close toZ2

stat, andZ consequently restarts in
a stereotyped manner: During the pause between the first
the second bipolar single pulseZ tends to its stable limit
cycle @Fig. 3~f!#. The second bipolar single pulse is admin
tered after a constant delay and hits the cluster in a vuln
able state, so that a desynchronization is achieved as
plained in Sec. IV B. After the stimulation induce
desynchronization the cluster resynchronizes:Z spirals back
to its stable limit cycle@Fig. 2~c!#.

VI. VULNERABILITY TO STIMULATION

Figure 4 shows how a bipolar single pulse and a bipo
double pulse affect a cluster in its stable synchronized st
wherewB , the phase of the order parameterZ at the begin-
ning of the stimulation, is varied within one cycle@0,2p#.

d

FIG. 4. Time course of the amplitudeR of the order paramete
from Eq. ~8! @~a!,~c!# and the firing densityp(t)5n(0,t) @~b!,~d!#
before, during, and after a bipolar single pulse@~a!,~b!# and a bipo-
lar double pulse@~c!,~d!#, wherefB5wB /(2p) mod 1, the normal-
ized phase of the order parameterZ at the beginning of the stimu
lation, is varied within one cycle. Stimulation starts att50. At the
bottom of each plot bipolar pulses are indicated by bars. In~a!,~b!
and ~c!,~d! same parameters as in Figs. 2~e! and 3~e!,3~f!, respec-
tively.
6-5
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We considerR, the amplitude of the order parameter and t
firing densityp(t). The bipolar single pulse causes a desy
chronization only provided it hitsZ at or close to a vulner-
able phasewB

crit @Figs. 4~a!,4~b!#. In contrast, the bipolar
double pulse causes a temporary desynchronization, no
ter at which initial phase it is administered@Figs. 4~c!,4~d!#.

VII. DEMAND-CONTROLLED DESYNCHRONIZATION

The bipolar double pulse explained in Sec. V B desy
chronizes a cluster independently of its initial dynamic sta
For this reason a bipolar double pulse can be used to e
tively block the cluster’s resynchronization. Whenever t
cluster tends to resynchronize, the same bipolar double p
is administered in order to prevent the cluster from res
chronization~Fig. 5!. In this way an uncorrelated firing ca
be maintained. The larger the coupling strengthK, the more
often a bipolar double pulse has to be administered to ca
a desynchronization.

VIII. DEMAND-CONTROLLED DEEP BRAIN
STIMULATION

In several neurological diseases such as Parkinson’s
ease or essential tremor brain function is severely impa
by pathological synchronization of neuronal firing. Parkins
nian resting tremor appears to be caused by a cluster of
rons located in the thalamus and the basal ganglia which
synchronously at a frequency similar to that of the trem
@19,20#. For instance, in the anterior nucleus of the vent
lateral thalamus there are the so-called no-response
which are neither modulated by somatosensory stimuli
by active or passive movements@20#. These cells fire rathe
periodically in an intrinsic manner, regardless of any fee
back signals. In contrast, under physiological conditions
neurons in this cluster fire incoherently@21#. In patients with
Parkinson’s disease~PD! this cluster acts like a pacemak
and activates premotor areas~premotor cortex and supple
mentary motor area! and the motor cortex@7,21,22#, where
the latter synchronize their oscillatory activity@23#. Simi-
larly, essential tremor also appears to be caused by a ce
cluster of synchronously firing neurons, which is located
different brain areas compared to PD@24#.

In patients with advanced PD or with essential trem
who do not respond to drug therapy any more, depth e
trodes are chronically implanted in target areas like the t
lamic ventralis intermedius nucleus or the subthalam

FIG. 5. Time course of the firing densityp. Two successively
administered bipolar double pulses with identical parameters
administered. The first one desynchronizes the cluster, wherea
second blocks the resynchronization. Model parameters as in F
Begin and end of bipolar pulses are indicated by dotted vert
lines connected by shaded regions at the top.
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nucleus with millimeter precision@13#. Up to now, electrical
deep brain stimulation~DBS! is performed by administering
a permanent high-frequency~.100 Hz! periodic pulse train
via the depth electrodes. DBS at high frequencies suppre
the neuronal activity of the pacemakerlike cluster which,
turn, suppresses the peripheral tremor@13#.

High-frequency DBS has been developed empirica
mainly based on observations during stereotactic surg
@13#. The mechanism by which DBS at high frequencies s
presses pathological rhythmic activity has not yet been cl
fied in detail. The permanent high-frequency stimulation b
sically mimics the effect of tissue lesioning by suppress
neuronal firing@13,25#. DBS is reversible and has a muc
lower rate of side effects than lesioning with thermocoag
lation @26#. However, permanent high-frequency stimulati
is an unphysiological input which may cause an adapta
of the stimulated neuronal networks. This may be one of
reasons why in a number of patients the stimulation am
tude has to be increased in the course of the treatmen
order to maintain a therapeutic effect. As a consequenc
the increased stimulation strength, neighboring areas ma
affected due to current spread, which leads to severe
effects such as dysarthria, dysesthesia, cerebellar ataxia

For this reason a different therapeutic approach with m
and efficient stimulation techniques based on stocha
phase resetting@9# has been suggested: Instead of simp
suppressing the neuronal firing in the pacemakerlike clus
the novel stimulation techniques aim at desynchronizing
pacemaker’s pathologically synchronized firing in a dema
controlled way@10–12#. Accordingly, Eq.~1! models the ef-
fect of stimulation on the pacemakerlike cluster. In oth
words, instead of stopping the driving force, I suggest
desynchronize it, so that it is no longer able to entrain ot
brain areas like premotor areas and the motor cortex.

Till now in all modeling studies only monopolar pulse
have been used@9–12#. The results presented here show th
at least in a phase oscillator network bipolar pulses
equally suitable for the design of demand-controlled doub
pulse stimulation. Based on these results and using a netw
of phase oscillators as a simple model for a neuronal po
lation @14#, I suggest to try to use demand-controlled DB
for the therapy of neurological diseases like Parkinson’s d
ease or essential tremor. To this end, the depth electrode
to be used for both stimulation and registration of the fe
back signal, i.e., the local field potential~LFP!, which in the
model corresponds to the firing densityp defined by Eq.~9!.
A desynchronizing bipolar double pulse is administered o
and whenever the pacemaker-like cluster becomes sync
nized, put otherwise, whenever its LFP exceeds a crit
value ~Fig. 5!. Note, that the first and the second bipol
single pulse of the bipolar double pulse are delivered to
same site. The goal of this approach is to effectively blo
the resynchronization and, hence, keep the firing as clos
the physiological~i.e., uncorrelated! firing mode as possible
Instead of the LFP registered via the depth electrode
could alternatively use an epicortical electrode measuring
neuronal electrical activity in cortical areas~e.g., premotor
areas or the motor cortex! which are sufficiently strongly
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synchronized with the target area stimulated via the de
electrode.

IX. DISCUSSION

In this study it was shown that a bipolar single pulse w
the right intensity and duration desynchronizes a synch
nized cluster of phase oscillators provided the stimulus
administered at a vulnerable initial phasewB

crit of the order
parameter. Furthermore, it was shown that a bipolar dou
pulse consisting of a first, resetting and a second, desync
nizing bipolar pulse desynchronizes the cluster indep
dently of the cluster’s dynamical state at the beginning of
stimulation.

The dynamics of the order parameterZ during the bipolar
single- and double-pulse stimulation is different fromZ’s
dynamics during monopolar single- and double-pulse stim
lation ~Figs. 2 and 3!. Nevertheless, with respect to the
desynchronizing effects the monopolar and the bipo
stimuli are comparable. A bipolar single pulse desynch
nizes only if it hits the cluster close to the vulnerable pha
wB

crit @Figs. 2~f! and 4~a!,4~b!#. The same holds for a monopo
lar single pulse@9#. In contrast, a bipolar double pulse d
synchronizes the cluster, regardless of the dynamical sta
which it is administered@Figs. 4~c!,4~d!#. Thus, a bipolar
double pulse can be used to block the resynchronization
fectively ~Fig. 5!. Again, the same is true for a monopol
double pulse.

The fact, that monopolar and bipolar stimuli are e
changeable concerning their desynchronizing effects, is
portant for all applications where bipolar stimulation is mo
favorable. For example, in medical and physiological ap
cations charge-balanced stimulation is typically required
order to avoid tissue damage.

The reset attained by means of the first, stronger bip
pulse of the bipolar double pulse guarantees, that a de
chronization is caused independently of the initial dynami
state of the cluster~see Secs. V B, VI, and VII!. The first
bipolar pulse shown in Figs. 3–5 consists of a positive an
negative monopolar pulse which both are so strong, that t
reset the cluster even when applied alone. Consequent
reset is already achieved after the positive pulse, i.e.,
order parameterZ is sufficiently close to the attractorZ1

stat of
the positive pulse@‘‘ ! ’’ in Fig. 3~e!#. In other words, during
the first bipolar pulse the cluster undergoes a double re
The first reset occurs at the end of the positive pulse,
second reset at the end of the negative pulse.

If in an experimental application such a strong reset c
not be performed or should be avoided in order to protect
stimulated system from damage, alternatively a resetting
polar pulse with reduced strength~i.e., with reduced intensity
I and/or durationT) can be used. In this case both the po
tive and the negative pulse of the first bipolar single pu
alone perform only an imperfect reset, while the combinat
of the two is strong enough to reset reliably. According
after the positive pulse there is still a certain distance
tweenZ and the attractorZ1

stat of the positive pulse, and thi
distance depends on the initial dynamical state at the be
ning of the stimulation. Nevertheless, after the negative pu
03622
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Z is sufficiently close to the corresponding attractorZ2
stat in-

dependently of the initial dynamical state, so that posit
and negative pulse together reset the cluster in a stereot
manner.

All bipolar single pulses used in this study have
(1,2) structure, meaning that their first pulse is a positi
pulse, whereas their second pulse is negative~Fig. 1!. Instead
of bipolar single pulses with a (1,2) structure, one can also
use bipolar single pulses with a (2,1) structure, where the
first pulse is negative and the second pulse is positive.
exclusive use of stimuli that have a (2,1) structure corre-
sponds to replacingX(t)→2X(t) in Eq. ~5!, which in turn is
equivalent to the transformationf j→f j1p ~see the reason
ing in Sec. IV B!. Except for this transformation the dynam
ics of the cluster remains unchanged.

Interesting alternative options, however, ensue from m
ing (1,2) and (2,1) stimuli. To illustrate this, let us again
dwell on the dynamics of the order parameterZ during the
bipolar double pulse@Figs. 3~e!,3~f!#. After the first, resetting
bipolar pulseZ is located in the attractor of the negativ
pulseZ2

stat. During the pause between the first and the sec
bipolar pulseZ has to run through nearly one period befo
the desynchronizing, second bipolar pulse can be admi
tered@Fig. 3~f!#. Such a long pause in between the first a
the second bipolar pulse may be a disadvantage in exp
mental applications, since this pause is a period of ti
where fluctuations or unforeseen external influences can
the cluster’s dynamical state in a way that the desynchro
ing impact of the second bipolar pulse gets spoiled. To av
such a long pause, we can replace the first bipolar pulse
(1,2) structure by a (2,1)-bipolar pulse. Consequently, a
the end of the first bipolar pulseZ is located inZ1

stat @‘‘ ! ’’ in
Fig. 3~e!#. During the pause between first and second bipo
pulse Z then runs through less than half a period befo
the second, desynchronizing (1,2)-bipolar pulse starts
@in ‘‘ s ’’ in Fig. 3~e!#. In this way the pause between the tw
bipolar stimuli is reduced by more than a factor of 2. Fu
thermore, sinceZ then does no longer cross the positi
x axis during the pause, there is no strong burst of firing
between the two bipolar pulses any more~see Fig. 5!. Obvi-
ously, the cluster’s transient reaction during stimulation c
cially depends on the pattern of consecutive (1,2) and/or
(2,1) stimuli.

Characteristic dynamical features of monopolar stim
are passed on to bipolar stimuli, because bipolar stimuli
combinations of consecutively administered monopo
stimuli. Let us consider the most important aspects.

The right stimulation parameters are reliably determin
in an experimental application with calibration procedur
that have been developed for the monopolar single-pu
stimulation@9# and the monopolar double-pulse stimulatio
@10#. These procedures work in the same way for the bipo
stimulation techniques presented here: A series of test stim
is administered. To extract a quantity that corresponds to
phasew of the order parameterZ from Eq. ~8!, the phase of
the dominant Fourier mode is extracted out of the exp
mental data with bandpass filtering and Hilbert transfor
and, finally, the correct parameters are obtained with ph
6-7
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PETER A. TASS PHYSICAL REVIEW E66, 036226 ~2002!
resetting curves. The Hilbert transformsH of a signals is
generated by a filter which causes a phase shift ofp/2 for all
frequencies. Applying such a filter yields the instantane
phasec and amplitudeA of s according tos(t)1sH(t)
5A(t)exp@ic(t)# @29#.

The bipolar stimulation techniques presented in this pa
can also be used for desynchronizing cluster states, which
complex synchronized states, where a population of coup
oscillators breaks into distinct clusters, each consisting
phase-locked oscillators@17,18#. Cluster states may even oc
cur in networks of globally coupled oscillators@18#. In
model equation~1! noisy clustering may emerge due to co
pling terms of higher order likeG(x)52Kmsin(mx) ~with
Km.0). IncreasingKm above its critical valuemD causes
an m-cluster state, which consists ofm equidistant clusters
where all individual oscillators have the same frequency@9#.
For example, increasingK2 above its critical value 2D gives
rise to a two-cluster state, where two clusters are sync
nized in antiphase. Synchronized states of this kind appe
be important in the context of neurological diseases@23,27#.
For supercritical couplingKm.mD, the order parameter i
given by

Zm~ t !5E
0

2p

n~c,t !exp~ imc!dc ~14!

@9,28#. Note thatZ1 is equivalent to the order parameterZ
defined by Eq.~8!. Zm runs on a limit cycle and has to b
desynchronized as illustrated in Figs. 2 and 3. For monop
stimulation techniques it has already been shown that
most effectively achieved with a stimulusScontaining terms
of mth order, e.g.,S(c)5I cos(mc) @9–12#. These results
are also valid for bipolar stimuli, because the latter are m
up of monopolar stimuli. Accordingly, also in the case
bipolar single-pulse and bipolar double-pulse stimulati
stimulation terms ofmth order are favorable for a quick an
strong desynchronization.

In this study we considered a stimulus of first order, i.e
stimulus S(c j ) containing only terms with sin(cj) and/or
cos(cj). Instead of the stimulusS(c j )5I cos(cj) defined by
Eq. ~3! we can, alternatively, use the general form of a fir
order stimulus:S(c j )5I cos(cj1g) with constantg. Such a
stimulus leads to the same stimulation mechanisms as
plained above. This can easily be seen by replacingc j by
c j1g and using the same arguing as in Sec. IV B.

Applying a stimulus which additionally contains terms
higher order, e.g., S(c j )5I 1cos(cj1g1)1I2cos(2cj1g2)
with constant parametersI 1 , I 2 , g1, andg2, to the model
investigated here, causes a desynchronization in terms
quenching of the order parameterZ from Eq.~8! in the same
way as explained in Secs. IV B and V B, provided that t
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right stimulation parameters are used. The additional stim
lation term of second orderI 2cos(cj1g2), however, gives
rise to an excitation of the amplitudes of higher order ter
Zm from Eq. ~14!, in particular, ofZ2 and Z4, so thatuZ2u
and uZ4u are larger after the stimulation than before. Duri
the transient after the stimulation the vanishing order para
eterZ damps the excited modesZ2 andZ4, so thatZ2 andZ4
quickly relax to zero, and the strongest uniform desynch
nization occurs with a delay after the end of the desynch
nizing stimulation. The order parameter-induced damping
excited modes is due to the slaving principle@1#. This desyn-
chronization mechanism has been studied in detail in m
nopolar stimuli@9,10# and holds equally in bipolar stimuli.

In a first approximation a phase oscillator can be used
a simple model for a rhythmically active neuron@14#. Ac-
cordingly, model equation~1! serves a simple model for
population of globally interacting neurons subjected
stimulation and random forces@9#. Based on the results pre
sented here I, hence, suggest to try to perform dema
controlled electrical deep brain bipolar double pulse stimu
tion for the therapy of neurological diseases characterized
pathologically synchronized neuronal activity perturbi
brain function. In contrast, standard DBS aims at mimici
the effect of tissue lesioning by simply suppressing neuro
firing @13,25#. As, for instance, in Parkinson’s disease t
uncorrelated firing is the physiological mode of functionin
in the relevant brain area, the demand controlled block of
resynchronization in that area~Fig. 5! might be the milder
and more effective therapy which would aim at reestabli
ing the physiological function instead of totally suppressi
the neuronal firing in that particular target area.

Model-based novel DBS techniques may be more eff
tive and may influence the affected neuronal dynamics i
more subtle way. Correspondingly, statistical physics m
contribute to the development of therapies that avoid sev
side effects. For this, along the lines of a top-down appro
microscopic models have to be investigated which take i
account all relevant neurophysiological features such as
dynamics of single ion channels, the anatomy of synap
interactions, transmission delays, etc. Since microsco
models of this kind are much more complicated than a mo
of globally coupled phase oscillators, the dynamical mec
nisms studied in the more macroscopic models will form
necessary basis and starting point for the study of mic
scopic models.
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